Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Crit Rev Oncog ; 29(3): 33-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683153

RESUMO

Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.


Assuntos
Neoplasias Encefálicas , Glioma , Redes Neurais de Computação , Humanos , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Glioma/diagnóstico , Prognóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
2.
Phys Med ; 119: 103316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340693

RESUMO

PURPOSE: MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35 T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3D-T1w) and dynamic contrast-enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35 T MRI-Linac. METHODS AND MATERIALS: The protocol implemented was used to acquire 3D-T1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35 T MRI-Linac. The detection of post-contrast-enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35 T MRI-Linac to images obtained using a 3 T scanner. The DCE data were tested temporally and spatially using data from a flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. RESULTS: The 3D-T1w contrast-enhancement volumes were visually and volumetrically similar between 0.35 T MRI-Linac and 3 T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54 % decrease and 8.6 % increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. CONCLUSION: Our findings support the feasibility of obtaining post-contrast 3D-T1w and DCE data from patients with glioblastoma using a 0.35 T MRI-Linac system.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
ArXiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131875

RESUMO

Purpose: MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3DT1w) and dynamic contrast enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35T MRI-Linac. Methods and materials: The protocol implemented was used to acquire 3DT1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35T-MRI-Linac. The detection of post-contrast enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35T-MRI-Linac to images obtained using a 3T-standalone scanner. The DCE data were tested temporally and spatially using data from the flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. Results: The 3D-T1 contrast enhancement volumes were visually and volumetrically similar (±0.6-3.6%) between 0.35T MRI-Linac and 3T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54% decrease and 8.6% increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. Conclusion: Our findings support the feasibility of obtaining post-contrast 3DT1w and DCE data from patients with glioblastoma using a 0.35T MRI-Linac system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA